

This page is intentionally left blank.

Contents

About This Book

Who Is This Book For?

What Will Be Covered?

How to Use This Book

Part I - Linux and the Command Line

Chapter 0 - Getting Started With Linux

Introduction

What is Linux?

Why Linux? (Open Source vs Closed Source)

What is the Command Line?

Installing Linux

For Linux Users

For MacOS Users

For Windows 10 Users

Video Version

Text Version

1. Enable the Windows Linux Subsystem

2. Download Ubuntu Linux

3. "Virtualize" Ubuntu Using VirtualBox or VMWare

If You Have Windows 7 or Less

1. Dual Boot Linux

2. Use Git Bash

Validate Your Linux Terminal Setup

Chapter 1 - Navigating the Linux File System

Introduction

The bash Shell

The Linux File System

The pwd Command

1. Likely Output on MacOS

2. Likely Output in the WSL or Linux

What does this output mean?

ls and cd

Command 1: ls

Command 2: cd

More on File Paths

Absolute vs Relative File Paths

Special Folder Names

1. The Root Directory: /

2. The Home Directory: ~

3. The Current Directory: .

4. The Parent Directory: ..

Chapter 1 Wrap Up

Chapter 1 Exercise Solutions

1.1 - Exploring the File Tree

Chapter 2 - bash Command Arguments

Introduction

Placeholders <> and []

Comparing Commands to Python Functions

some_command

[FLAGS]

[KEYWORD ARGUMENTS]

[POSITIONAL ARGUMENTS]

Chapter 2 Wrap Up

Chapter 2 Exercise Solutions

2.1 - Creating the pictures/ Directory

Chapter 3 - Moving and Deleting Files

Introduction

Introduction

Moving Files With mv

Renaming Files with mv

Deleting Files With rm

Story Time

Chapter 3 Wrap Up

Chapter 3 Exercise Solutions

3.1 - Creating the furniture directory

3.2 - Renaming a �le with a bad name

3.3 - Aliasing rm

3.4 - Practicing rm

Chapter 4 - Wildcards and Globbing

Introduction

Wildcards

Wildcards in Context

Wildcard 1 - * (asterisk)

Wildcard 2 - ?

Wildcard 3 - []

Wildcards and Double Quotes

Globbing in Python!

Chapter 4 Wrap Up

Chapter 4 Exercise Solutions

4.1 - Sorting Files by Type with Wildcards

Chapter 5 - The Power of Redirection

Introduction

A First Encounter with Redirection Operators

Streams - The Communication Channels of bash Commands

Creating & Overwriting Files with >

Creating & Appending to Files with >>

Taking Streams as bash Command Inputs

Standard Input

More Examples of Using Streams as an Input

The < Operator

The << Operator

The | (Pipe) Operator

Awesome Commands that Take Streams as Input

grep - The Ctrl+F of bash

pbcopy and pbpaste

pbcopy

pbpaste

nl

sort

wc

Chapter 5 Wrap Up

Chapter 5 Exercise Solutions

5.1 - Capturing the Output of ls with Redirection Operators

5.2 - "grepping" /bin

5.3 - Playing with nl, wc, and sort

About This Book

Welcome to this book about transitioning from a beginner python "coder" to a genuine
(southern accent) python software engineer! Before we begin I want to say that this book is
a lot less about coding in python than the title may have led you to believe.

Sure, there are some chapters on the syntax of classes and objects. However, the part of the
"software learning curve" that beginners often struggle with the most are the non-coding
aspects of software development. There is a big (but actually straightforward) jump you
have to make to transition from writing small, buggy scripts on your laptop to writing giant
code bases used by potentially thousands of people.

Who Is This Book For?
This book is meant to be a launch pad for "coders" who have learned the basic syntax of
python, but don't necessarily know where to start when it comes to building large, reliable
software to solve real world problems. For example, you may have learned python basics on
your own or in a course, but you haven't studied "Computer Science" or "Software
Engineering" in school. Many hobbyists, data analysts, data scientists, software interns, and
even software engineers with a non-software background fall into this category.

What Will Be Covered?

So, what exactly is the difference between coders who struggle and those who feel like they
can build anything? They say, "you don't know what you don't know." Here, I've tried to make
the gap between experienced and inexperienced programmers more concrete by naming the
key technical skills that I have seen make the largest difference.

How to Use This Book
It's written sequentially so as to build on itself chapter by chapter. You should be able to skip
ahead if you already know the material of a previous chapter.

Part I - Linux and the Command Line

In this section, we will cover installing and setting up the Linux command line. Then, we will go
over bash –the command language used to control your computer through the command
line. Before moving on, please consider these two pieces of advice that I consider to be game-
changing for my own tech career:

Takes digital notes with your own examples.

Alright, I'll say it. I love bash , but frankly, it is unintuitive and disorganized in many aspects.

There will probably never be a point that you can sit down and write a sweet, 30+ line bash
script without Googling at least once. So, save your future self a good amount of time, and
enhance your learning experience by writing down your exercise solutions, your interpretation of
command syntax, di�cult concepts, and anything that sticks out to you.

Keeping my own "personal knowledge base" in the form of digital notes has greatly increased my
productivity when it comes to learning technical things and applying what I learned afterwards.
As coders, we use Google a lot to �nd answers to particular questions. As you �nd these, record
the links to the great videos, articles, and books, so that you can �nd them faster next time.

Also, videos are nice, but if you need to go back and �nd one speci�c piece of information buried
in a 10-minute video, you might be stuck having to watch the whole thing over again. In addition
to summarizing the useful takeaways in your notes, take screenshots of nice diagrams in both
videos and books. Copy/paste to your notes liberally!

Screenshot Shortcuts

Cmd + Shift + 4 MacOS

Cmd + Ctrl + Shift + 4 MacOS (saves the screenshot right to your clipboard!)

Win + Shift + S Windows 10

Note Taking App Recommendations

Few note taking apps actually support syntax highlighting. I have personally used all three of
these and loved them:

BoostNote (free forever)

Quiver (one time fee on MacOS)

Pro version of Notion (recurring monthly subscription)

A cool thing about BoostNote is that you must take your notes in Markdown . We'll have a whole
on that later in this book because of how useful it is. This book is actually written using
Markdown , and I think it looks quite nice

Tip

⌘ ⇧

⌘ ⌃ ⇧

⊞ ⇧

Do the exercises in your own terminal as you read.

If you are new to the terminal or inexperienced with it, PLEASE follow along with the exercises,
and resist the temptation to skip past them. While bash is powerful, it is notorious for having
tricky nuances that lead to very confusing bugs.

By actually running the commands for yourself, you will develop your bash "muscle memory"
and discover the aspects of bash that trip you up personally before you unknowingly cause a
bug in a long script and have to spend hours debugging it.

With these out of the way, enjoy learning about Linux!

Tip

Chapter 0 - Getting Started With Linux

Introduction

Depending on your background, this chapter may supercharge your computer skills more
than any other chapter in this book. The concepts we'll discuss here are the gateway to
limitless power which will allow you to accomplish incredible computer-y feats with the
greatest of ease. Here are just a few of such feats:

run your own website

host a Minecraft server that will be the envy of all your friends

bulk download YouTube videos and music and convert them to other �le formats

understand answers to everyday tech problems on Google that ba�e regular humans

generate pretty PDFs like this one

download and run programs that are inaccessible without the command line

organize, rename, move, and delete �les on your computer incredibly quickly

make your code available to the world to use

take advantage of tools that make writing code a joyful, ful�lling experience

The last four bullet points make the ideas in this chapter essential to your development as a
programmer (pun intended). I hope you're excited to get started! We have a lot to cover, but
�rst you will need to know what Linux and the Linux terminal are.

What is Linux?

Linux is an operating system, or OS for short. Examples of operating systems are Windows
(10, 8, 7, XP, Vista) and MacOS (Big Sur, High Sierra, El Capitan). An operating system is the
software that enables a computer to use its hardware to run programs. Until you install an
operating system on a computer, you cannot run any programs on it. Without an OS, a
computer is not much more than expensive pile of metal.

It can be helpful to think of a computer as two components, software and hardware.

The hardware is the physical parts of your computer such as your keyboard, mouse, screen, hard
drive, RAM, etc. The software is the programs that run on your computer, for example, Spotify,
Microsoft Word, Google Chrome, the operating system, etc.

Note

Here is a diagram showing the relationship between an OS, computer hardware, and
software. See the penguin icon ? That's Linux!

Why Linux? (Open Source vs Closed Source)
You might wonder what the purpose of this third operating system is when most of the world
seems to do just �ne using Windows and MacOS. There are many fantastic reasons to use
Linux for coding that all stem from the fact that Linux is open source.

Back in the early 90s, software developers were dissatis�ed with proprietary ("closed
source") operating systems for a number of reasons, and their response to this was Linux!

Here is some background on why an open source OS is desirable. If a closed source
operating system is not stable and needs some kind of bug �x, you are stuck waiting until the
company in charge of it decides to release a patch (if they ever do). Also, proprietary
operating systems usually are not free (Windows) or they can only run on special hardware
(MacOS).

In contrast, open source software is free, and if you �nd a bug that bothers you or a feature
you wish it had, you can just write it yourself! Then, if the administrators of that open source
project like your code, they can approve it so your new feature is available for everyone. There
are various pros and cons to open source vs. closed source software, but in general,
software developers love open source tools because they are free and have a whole
community helping to make them better.

You can probably see why companies prefer to keep their software proprietary. If Microsoft
opened up Microsoft Word to the world for all programmers to make it better... they would
also have made it freely available, and so they would not make any money on it. Trade offs.

Today, Linux has blossomed into the most popular OS to run software on behind the scenes.
That may strike you as strange, because it is highly possible you have never seen a computer
running Linux in your life! That is because Linux is not as user friendly to non-coders, so
MacOS and Windows prevail on most household computers. However, I can guarantee you
that almost every website, mobile app, and internet-enabled program that you have ever
used works because there is a computer running Linux somewhere far away powering it.

If you have never used Linux before, welcome to the club! Get ready to gain some computer
superpowers and some serious "street cred" in the tech community.

What is the Command Line?
You've seen it before. Picture an intense movie scene. There's critical information the coder
can extract from the disk, but only if he can decrypt it! He furiously types 1's and 0's onto an
intimidating black screen. Suddenly, the disk clicks and confetti bursts out. He's done it!
Everyone cheers

De�nitely what coding looks like...

Drum roll please! Introducing. The. Command line!!! Also known as the terminal.

That's right. I know it doesn't look like much, but this black and green window is the key to
unlocking the computer-y superpowers I've been promising you. Unlike Windows and MacOS,
you aren't meant to control Linux by clicking around on pictures of folders and dragging
things this way and that way. Instead, we will control Linux by typing commands into the
terminal, and that's a good thing!

So, with that said, let's get your terminal set up!

Installing Linux

Before we can get into the fun part of using Linux, we will need to install it. The instructions
differ depending on the OS you have on your computer. Read below and follow the
instructions matching the OS you are currently running.

Sadly, there is no way I can include solutions to every possible error you might see during the
install process.

However, what we are attempting to do here is extremely common. So, if something does
happen, take heart and copy/paste as much of the error message as you can into ye ol' Google.
There should be a host of YouTube videos and StackOver�ow answers leading you on to
success.

For Linux Users

Why are you even reading this chapter?

For MacOS Users

Actually, MacOS is Apple's proprietary �avor of Linux! That may not make sense, so don't
worry about it right now. We'll cover Linux distributions in a later section. Just know that you
have it a lot easier than Windows users at this stage.

Use Cmd + Space to open up Spotlight Search and then search for terminal . And
you're done!

If you want a program that is slightly nicer than Terminal , go to https://iterm2.com/ and
download iTerm2 .

If you choose to use iTerm2 , you should open up iTerm2 any time we say "the terminal" or "the
command line" moving forward.

For Windows 10 Users

Before Windows 10, it was awkward to use Linux on a Windows computer (See the Windows
7 Section for details). However, due to the high demand from developers, Microsoft came up
with a solution that allows you to run Windows and Linux at the same time. They call this the
Windows Linux Subsystem or WSL for short.

Tip

⌘

For Mac Users

https://iterm2.com/

Installation processes change somewhat frequently. If you �nd that these installation
instructions are no longer up to date at the time you read this, Google search "How to install the
Windows Linux Subsystem".

Video Version

When it comes to clicking on various things to install software, I personally prefer to watch a
video. This ~3.5 minute YouTube video does a great job demonstrating the installation.

Text Version

You can �nd the o�cial Microsoft version of these instructions here.

1. ENABLE THE WINDOWS LINUX SUBSYSTEM

1. Log onto your beautiful computer running Windows 10.

2. Search for Powershell in your search bar.

3. Right click on Powershell and click Run as Administrator . Note, at this point, you may
be prompted to use your administrator password.

4. Copy this command into Powershell and hit Enter . Then, type Y when it asks you if
you are sure and hit Enter again.

5. If your computer prompts you to restart, do it.

2. DOWNLOAD UBUNTU LINUX

1. Launch the Microsoft Store

2. Search Ubuntu

3. Click Ubuntu 18.04 and click Get

4. Now launch it! (Find Ubuntu in the task bar to launch it)

5. Important! Ubuntu will prompt you to set a username and password. I highly
recommend using the same username and password that you use on your Windows OS
user so that it is easier to keep them straight.

3. "VIRTUALIZE" UBUNTU USING VIRTUALBOX OR VMWARE

VirtualBox and VMWare are both programs that let you run other operating systems at the
same time as your "host" operating system–which, in your case, is Windows 7 or less.
Technically this is the same technology that the Windows Linux Subsystem uses on Windows
10.

Warning

⏎
⏎

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-
Linux /all

https://www.youtube.com/watch?v=5RTSlby-l9w&ab_channel=PercyGrunwaldfromTopTechSkills
https://docs.microsoft.com/en-us/windows/wsl/install-win10

However, the WSL is much more tightly integrated with Windows than Linux would be if you
used one of these two programs. Due to this, you would have an okay experience learning
and using Linux for development, but it would be a pain compared to using the WSL.

There are a multitude of tutorials for these two tools online.

If You Have Windows 7 or Less

Sadly, if you are running Windows 7 or less, your options are quite limited. Microsoft did not
add the "Windows Linux Subsystem" until Windows 10. And since, unlike MacOS, Windows is
not a special version of Linux, you cannot run Linux commands directly on Windows and
expect the same results.

Here are two options:

1. Dual Boot Linux

Download Ubuntu Linux onto a USB drive and "dual boot" it. This means that whenever you
turn your computer on, you will have a choice between starting up in Windows and starting
up in Ubuntu Linux. Beware that there is a risk of corrupting your hard drive if you do this
wrong. There are many tutorials online and on YouTube if you want to go this route.

This book covers the fundamentals of Linux from the software developer perspective, but if
you dual boot Linux, you will want to know much more. If you are committed, you have a long
Linux road ahead of you, but you will come out knowing it better than everyone else.

2. Use Git Bash

Head over to https://git-scm.com/download/win and install "Git for Windows". This is a very
useful program that we will actually be using later in this book. When you install it, it will also
install a program called "GitBash". This is a program that simulates a Linux command line on
Windows.

Unfortunately, Git Bash is not a true Linux command line, so many of the Linux commands
will not work in it.

Validate Your Linux Terminal Setup

Once you have any of these solutions working to use your Linux terminal, type in the
following command and hit Enter .

If the text Hi, terminal! prints out on the line below, congratulations!! You have a working
terminal! In the next chapter, we will give some more background on the terminal and start
talking about how to use it.

⏎

echo "Hi, terminal\!"

https://git-scm.com/download/win

Chapter 1 - Navigating the Linux File System

Introduction

In this chapter, we will introduce the bash shell and use bash commands to navigate around
in Linux using the terminal.

The bash Shell
So far, we have talked about Linux as an operating system, and we have established that the
main way users are meant to control Linux is through the command line. The only command
we have seen is echo which prints a message to the console (another name for the
command line). As it turns out, the echo command belongs to a scripting language called
bash . bash commands are the ones we will be learning in part one of this book.

As it turns out, there are several command languages–or shells–that can be used to control
Linux. After bash , the next most popular shells are zsh (z-shell) and fish . It is safe to say
that bash is the industry standard when it comes to writing scripts for Linux.

The Linux File System

I am sure you have noticed that Windows and MacOS organize �les using folders. Linux does
the same. We call the complete set of �les and folders on an operating system a �le system.

Directory is a synonym for "folder" when talking about a �le system.

Here is an example �le tree with a few folders.

Note

A File Tree

We can also represent a �le tree in text like this:

We will refer back to this example �le tree several times in the next sections.

Note that including a / at the end of a folder name is optional. If a �le name ends in a / , you
know it's actually not a �le, but a folder. In this text diagram, we would not be able to tell whether
fruits/ , tomatoes/ and string\ cheese/ , etc. are folders without the / at the end.

The pwd Command

It is time for our second bash command! Open up your terminal and type pwd . This is short
for "print working directory".

1. Likely Output on MacOS

pictures
├── fruits/
├── unknowns
│ ├── string\ cheese/
│ └── tomatoes/
└── vegetables
 ├── asparagus/
 ├── carrots/
 ├── celery/
 ├── summary.txt
 └── vegetable\ summary.txt

Note

$ pwd
/Users/eric

2. Likely Output in the WSL or Linux

The $ in front of pwd is not part of the command. It is supposed to inform you that you are in a
bash terminal, and therefore able to enter bash commands.

In your terminal, if you see a # instead of a $, then you are running your terminal as the "root"
(or admin) user which is dangerous. The root user has permission to delete or change any �le on
your system, which could do serious harm if you edited the wrong �les.

Type whoami to get the user you are acting as in your terminal session.

What does this output mean?

It is okay if your output from pwd does not match the examples above. Whatever you got,
this output is the folder you are currently inside of in your terminal AKA your working
directory. We call this sort of string a �le path, which is a path to the location of a �le or folder
on your computer.

The �le path format is pretty self-explanatory: it is a sequence of nested folders separated by
/ s. The very last name in the sequence can be a �le or a folder.

If folder A contains a �le or folder B , we call A a parent directory. In this case, we would
also call B a child directory or child �le, because it is contained in A .

Here is another �le path example using the �le tree from earlier. We are assuming that
pictures/ is inside of eric/ :

We will see more examples in the next section.

$ pwd
/home/eric

Note

Danger

the file path to summary.txt
/Users/eric/pictures/vegetables/summary.txt

The reason that, after running pwd , outputs similar to /Users/eric and /home/eric are
"likely" is because the bash shell usually starts you out inside your user's home directory.

On the main operating systems–Windows, Linux, and MacOS–each user on one computer has a
folder named after them. All of a user's �les and folders are created here by default. We call this
your user's home directory. Only your user and the "root" user have the ability to create, edit, and
delete �les inside of your home directory.

ls and cd
pwd shows us which folder we are currently inside of in the terminal–we are going to call this
our "working directory" or "current directory" from now on. We can "move around" inside the
�le system using the ls and cd commands.

Command 1: ls

ls is short for "list". It shows you all the �les and folders in your working directory.

For example, if I were inside of /Users/eric/pictures/vegetables , I would get the following
output from ls :

There are often hidden �les and folders in your home directory. Hidden �les and folders have
names starting with . . By default, hidden �les and folders do not show up when you browse
your �le system both when you use your mouse to click on folders, and when you type ls .

To check for hidden �les and folders in your current directory, use ls -a .

We will talk about the . and .. results in the section on special folder names.

Command 2: cd

cd is short for "change directory". Knowing that I'm inside of
/Users/eric/pictures/vegetables , I can move into the celery/ folder like this:

Note

$ ls
asparagus carrots celery summary.txt vegetable\ summary.txt

$ cd /Users/eric
$ ls -a
you will likely see more than this in your user home
. .. .local pictures

$ cd celery
$ pwd
/Users/eric/pictures/vegetables/celery

Success! If I hadn't been inside of /Users/eric/pictures/vegetables already, I could have
typed out the full path to celery/ like so:

We will look closer at the difference between these two approaches in the section on absolute
and relative �le paths.

More on File Paths

Before we look at more example �le paths, we need to de�ne two types of �les paths (there
are only two). For context, let's look at my home directory again.

On my machine, my home directory is at /Users/eric . This seems like an organized way to
do things: there is clearly a folder somewhere on my machine called Users , and it makes
sense that my user folder (eric) belongs in there.

But is the Users folder inside of anything else? If it is, is the Users folder's parent directory
have a parent directory? How far up the �le tree can we go?

The answer to all these questions is / . Yes, I know, very descriptive. But seriously, / is
actually a folder called the root directory. There is nothing containing / . On Linux-style
operating systems, / is where the entire �le tree begins.

Did you catch that the �le system is shaped like a tree , and the folder containing all folders is
called the "root"? Deep

Now that you know what / means, we can �nally de�ne the two types of �le paths.

Absolute vs Relative File Paths

I mentioned earlier that there are two types of �les paths. They are:

1. Absolute File Path: A �le path starting with / . If you see that a �le path starts with / ,
you know exactly where it is on your system.

2. Relative File Path: Relative �le paths do not start with / . Let's elaborate on this.

Because relative �le paths do not start with / , they are "relative" to your working directory
(the output of pwd).

$ cd /Users/eric/pictures/vegetables/celery
$ pwd
/Users/eric/pictures/vegetables/celery

Note

For example, assume that the pictures/ directory from earlier is inside of eric/ . We would
like to know the path to summary.txt . If pwd shows you that your working directory is
/Users/eric , then instead of writing out the full absolute path

we can actually just write

Programmers hate spaces in names and �le paths.

If you want to turn a programmer against you for life, go put spaces in all of his/her �le and folder
names, and also in any database column names and dictionary keys while you are at it.

Spaces in names were �ne back when you were a regular human, but now that you are becoming
a software engineer, you must follow a more enlightened path of hate.

Wait, what?

Let's say your �ngers betray you and you name a folder "string cheese". Now suppose you try to
cd into it:

Yep! That pretty much sums up the problem. It looks like we are trying to pass two separate
arguments to cd : string and cheese ... because spaces are the only way bash knows how
to tell arguments apart. And then here you come putting spaces in your folder names and
confusing the poor bash interpreter. Not cool.

To get around this issue, you will need to either rename string cheese to something else or
put quotes around it:

Try to form the habit of using names like string-cheese , string_cheese , stringCheese ,
etc. I personally think hyphens are the prettiest, but technically the underscores are more
"pythonic". And the camelCase style? Pssh! What is this? Javascript?

Special Folder Names

absolute path to summary.txt
/Users/eric/pictures/vegetables/summary.txt

path to summary.txt relative to /Users/eric
pictures/vegetables/summary.txt

We Hate Spaces In Paths

$ cd string cheese
cd: no such file or directory: string

friends don't make friends have to type quotes when using cd
$ cd "string cheese"

There are four special folder names that have a particular meaning:

1. The Root Directory: /

/ The root directory. cd / will always take you to the root directory.

2. The Home Directory: ~

The home directory. ~ is an alias of home directory belonging to the user currently using the
terminal. An alias is a nickname or shorter version of something.

If you ever get lost, cd ~ (or even just cd) will always take you home.

Here is yet another relative path to the vegetable summary.txt �le:

3. The Current Directory: .

No matter where you are... . is where you are. Observe:

4. The Parent Directory: ..

No matter where you are, .. means "parent directory" or "up a directory". For example:

~/pictures/vegetables/summary.txt

$ pwd
/Users/eric

$ cd .
$ pwd
/Users/eric

we're going into this folder so many times!!
$ cd ././././././././././.
$ pwd
/Users/eric

$ cd ./pictures
$ pwd
/Users/eric/pictures

stylish equivalent of "cd pictures/fruits" 😎
$ cd /Users/eric
$ cd ./pictures/././fruits
$ pwd
/Users/eric/pictures/fruits

$ cd ~
$ pwd
/Users/eric

$ ls
pictures

Any time you are typing out a long path, press the Tab key! And then press it again and again!
In the terminal, Tab autocompletes commands for you. It works especially well with paths to
�les and folders.

Use cd and ls to explore your �le system for a while. Here are some things to look at:

1. What are all the folders in the root directory (/)? Suggestion: you might �nd /bin
interesting.

2. Explore your own folders that you normally go through using a mouse.

3. Play with the 4 special paths.

4. Become addicted to the Tab key! There should be a dopamine spike in your brain
everytime you touch that key

For Windows Linux Subsystem Users

The full explanation here is complicated (and very cool), but su�ce it to say that your home
directory inside the WSL is not the same as your Windows home directory where you keep your
Desktop , Documents , and other main folders.

The Windows 10 C:\ drive is "mounted" to the WSL �le system at /mnt/c . This means that
your Windows home directory should be at /mnt/c/Users/<your username> . So mine would
be at /mnt/c/Users/eric . Likewise, your windows equivalent of / is at /mnt/c/ .

Chapter 1 Wrap Up
Great job making it this far! In this chapter, we saw how to move through �les and folders on
a Linux system using cd and ls . The ability to navigate the Linux �le system is foundational

$ cd ..
$ pwd
/Users

pointlessly convoluted way of getting to celery
$ cd eric/pictures/unknowns/../vegetables/celery
$ pwd
/Users/eric/pictures/vegetables/celery

go up two directories (to pictures/) and then into fruits/
$ cd ../../fruits
$ pwd
/Users/eric/pictures/fruits

Press Tab All the Time For Autocompletion!⇥

⇥
⇥

Exercise 1.1

⇥

to being able to take advantage of the cool parts of Linux.

In next chapter, we will dig into the format of bash commands so you can learn them very
quickly.

Chapter 1 Exercise Solutions

1.1 - Exploring the File Tree

Nothing to see here. The exercise was just to explore your �le system using the terminal.

Chapter 2 - bash Command Arguments

Introduction

We have o�cially seen �ve bash commands so far: echo , whoami , pwd , cd , and ls .
Generally they have all followed the same pattern: you type the command �rst, and
sometimes you type some extra arguments after the command to be more speci�c about
what you are trying to do.

For example, echo "hi" has the string "hi" as an argument. ls -a has a weird -a
argument that causes it to print out hidden �les in addition to the usual output of ls . In this
chapter, we will discuss what the different types of bash command arguments are, and how
to use them.

Once you understand the command argument types, you will be able to glance at short
summaries of what a command does and immediately understand how to use it. Let's get
into it!

Placeholders <> and []

When you Google for help with certain bash commands, or when you type a command
incorrectly, you will often see abbreviated explanations like this:

or

This is a general format that tells you what you are meant to plug in as an argument for the
cd command. A lot of bash beginners get confused by this format and end up typing
something like:

takes you to a path of your choice
cd [PATH]

takes you to a path of your choice
cd <PATH>

$ cd [some/awesome/path]
fail...

or

The brackets ([]) and angle brackets (<>) are just placeholders to make the general
command format look cleaner. Using this placeholder format, you can leverage what you
already know about Linux (such as what a �le path is) to quickly grasp what a new
command does.

Now that you have seen some example bash commands and know about how, here are two
commands to use right now: touch and mkdir .

Their usage is like this:

Weren't those explanations concise? That should be enough information to know how these
work now that you know about paths and basic command formats.

Task

Use these commands to create the pictures/ directory and all of the �les and folders. While
you do this, play with using both relative and absolute paths. When you are �nished, your should
have a directory structure like this:

If you get stuck, don't feel bad about looking at the solution at the end of the chapter. Just know
that you will feel like more of a champion (and you will learn much more) if you try it on your
own �rst.

$ cd <some/awesome/path>
fail...

Exercise 2.1

creates files at one or more paths
touch <file path 1> <file path 2> ...

create directories at one or more paths
mkdir <directory path 1> <directory path 2> ...

pictures
├── fruits/
├── unknowns
│ ├── string\ cheese/
│ └── tomatoes/
└── vegetables
 ├── asparagus/
 ├── carrots/
 ├── celery/
 ├── summary.txt
 └── vegetable\ summary.txt

The Tab key's autocompletion works when you use touch and mkdir . When you are typing
out the part of the �le or folder path that already exists, Tab can speed you through it.

Comparing Commands to Python Functions

You can think of bash commands like individual Python functions. Sometimes you can even
think of them as a whole module of related functions. There is a mantra of good software
design that says: every program, function, variable, class should "do one thing, and do it
well."

The original implementers of the standard set of bash commands were very intentional
about following this idea. Each command covers a set of functionalities that are very closely
related, and nothing outside of that scope.

For example, the ls command can list non-hidden �les and hidden �les; it can list the
attributes of �les such as their size, date created, and access permissions; it can sort �les by
size, or recursively list all of the �les and folders in subdirectories; and it can do many more
highly niche operations that all have to do with listing.

The point here is that ls only does listing, and it is awesome at it! It is a one stop shop for all
your �le/folder listing needs. So how do we do all these things with ls ?

You may have guessed that the way we access all of these functionalities is by passing very
speci�c arguments to ls . To see all of the arguments and functionalities of a bash
command, you can use the man command as shown below. man is short for manual . You
can use it to look up all of the "General Commands" that come with bash .

You can press Q in your terminal to exit out of the man output.

Here is some abridged output. You only need to get the picture of what a " man page" looks
like and how you might use it yourself.

Are You Using Tab ?⇥

⇥
⇥

Tip

$ man ls

NAME
 ls -- list directory contents

SYNOPSIS
 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1%] [file ...]

DESCRIPTION

Did you see the [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1%] part of the man page??
Those represent all of the options available for the ls command. That is a ridiculous amount
of options! (not in a bad way). It looks like they almost had to use every letter of both the
upper- and lowercase alphabets to cover them all. Do you see a in there? We used that one!

Since we've already talked about placeholders, you might already sense that the [] brackets
are unnecessary.

After seeing this list, you may be wondering: "there certainly are a lot of options here, are we
able to multiple options at once? What would that look like?" Yes! Let's breakdown all types of
bash arguments now.

Like python functions, bash commands can take both conditional and keyword arguments.
Just like with python functions, these arguments can have multiple types: strings, integers,
booleans, etc. Technically, anything you type into the terminal goes into a command as a
string, but the command is able to parse that string to the type that it needs as long as your
string is formatted correctly.

Your typical bash command format looks something like this:

We will step through this from left to right.

some_command

Self-explanatory. Examples are echo , ls , cd , etc.

[FLAGS]

The term "�ag" is how bash scripters refer to boolean arguments. If ls were a python
function, it might look something like this:

 ...
 The following options are available:
 ...
 -a Include directory entries whose names begin with a dot (.).
 -p Write a slash (`/') after each filename if that file is a
directory.
 -R Recursively list subdirectories encountered.
 -S Sort files by size
 -l (The lowercase letter ``ell''.) List in long format. (See
below.) A total
 sum for all the file sizes is output on a line before the long
listing.
 ... much more

some_command [FLAGS] [KEYWORD ARGUMENTS] [POSITIONAL ARGUMENTS]

def ls(a=False, l=False,... other arguments):
 if a:
 # show all the hidden files
 if l:

In python, if we wanted to list all the directories with ls() , we would pass True in for a like
so:

In bash , speci�cally for boolean arguments, we do not type some equivalent of True or
False , to ls . If we include -a in our command, then we are setting a to True . If we don't,
then a defaults to False .

If we want to use multiple �ags we can do it in two ways:

Pretty easy right? Note that, as with Python, the order of these �ags does not matter. ls -
la is the same as ls -al is the same as ls -a -l .

Often, �ags have a longer alias that is more descriptive than just one letter. For example, -v is
usually short for --verbose . This usually tells a bash command to print out extra information
as it runs so you can get a clear picture of everything the command is doing.

98% of the time, the longer version is written with two dashes -- rather than just one. Some
commands do not follow this single vs double dash pattern, and that is frustrating for us regular
people who like patterns because they make things easier to memorize

[KEYWORD ARGUMENTS]

Also, like in python, a lot of bash commands are able to accept keyword arguments. ls has
no keyword arguments, so for now I will make up a new command to use an an example.

Suppose we had a command called download-youtube-video . You can probably guess what
it should do: download youtube videos.

Just like with Python functions, some keyword arguments may be required while others have
default values. Also, for most commands, it does not matter which order you write the
[OPTIONS] in.

We will say that the " man page" for the download-youtube-video command looks like this:

 # show the list of files in "long mode"
 ...

list all the directories
ls(a=True)

set both the "l" and "a" flags to True
$ ls -l -a

same thing
$ ls -la

Note

This would be an awesome command, right? If I ever use a command line tool that you
create, and the arguments it takes are formatted this well, I will hug you. The arguments are
so easy to understand!

But just in case they are not, below are some examples of how we would use this command.

It almost never matters which order you write the optional [FLAGS] and [KEYWORD
ARGUMENTS] in. In this case, [OPTIONS] is a lazy way to refer to both of those.

It also never matters whether you use the long form --audio-only or the short form -a .

Use any or all of these. Chances are, as you use the command line more, you will get lazy and
only use short forms only. But you are your own person and you can make that sort of weighty
decision yourself

Try to download a dancing penguin video

Download the dancing penguin video, but make sure the video goes to the right place with
the right name. Note that we can use back slashes \ to spread a command across multiple

$ man download-youtube-video

NAME
 download-youtube-video - download videos from youtube.com

SYNOPSIS
 download-youtube-video [OPTIONS] <VIDEO_URL>

FLAG OPTIONS
 -b, --backwards
 Downloads the video... but it plays backwards!
 -a, --audio-only
 Only downloads the audio
 -v, --verbose
 Show a progress bar as the video downloads

KEYWORD OPTIONS
 -s, --speed <speed>
 The video playback speed: 1.0x / 1.25x / 2.0x
 Defaults to 1.0x
 -q, --quality <quality>
 Video quality: 140p / 540p / 720p / 1080p / 4k
 Defaults to highest available
 -o, --output-file-name <file path>
 (REQUIRED) Path name of the downloaded video/audio file
 ...

Note

$ download-youtube-video https://youtube.com/video/dancing-penguin
Error! Missing required keyword argument --output-file-name

lines.

Download the dancing penguin video backwards at 4k.

Only download the sweet soundtrack of the dancing penguin video, but backwards.

[POSITIONAL ARGUMENTS]

The last argument type is positional arguments. Positional arguments are arguments that do
not have a key-label like --url-of-video-to-download <url> to identify which parameter
the argument is being passed in for.

In our download-youtube-video command, VIDEO_URL is a positional argument. Since it has
no key-label, the only way the download-youtube-video command knows that
https://youtube.com/video/dancing-penguin is meant as the VIDEO_URL is because it is
the �rst unnamed argument.

With many commands, you can actually put keyword arguments both before and after the
positional arguments like so:

This argument ordering can be confusing to read, but it is often valid. You should also know
that many commands are picky about which order the positional and non-positional
arguments go in. So, the only way to know for sure if your ordering of arguments will work is
to read the man page or just try running it.

Chapter 2 Wrap Up

$ download-youtube-video \
 --output-file-name /Users/eric/videos/dancing-penguin.mp4 \
 https://youtube.com/video/dancing-penguin
SUCCESS!

$ download-youtube-video \
 -b --output-file-name /Users/eric/videos/backwards-dancing-penguin-HD.mp4
\
 https://youtube.com/video/dancing-penguin
SUCCESS!

$ download-youtube-video \
 --backwards --audio-only \
 --output-file-name /Users/eric/videos/backwards-dancing-penguin-HD.mp3 \
 https://youtube.com/video/dancing-penguin
SUCCESS!

$ download-youtube-video \
 --backwards \
 https://youtube.com/video/dancing-penguin \
 -o backwards-dancing-penguin.mp4

Great work reading through this chapter! Knowing how the different argument types work is
a superpower that will help you learn new commands with rocket-like e�ciency .

Chapter 2 Exercise Solutions

2.1 - Creating the pictures/ Directory

The directory looks like this:

Here is the solution with commentary. The Tab key sure is nice here

pictures
├── fruits/
├── unknowns
│ ├── string\ cheese/
│ └── tomatoes/
└── vegetables
 ├── asparagus/
 ├── carrots/
 ├── celery/
 ├── summary.txt
 └── vegetable\ summary.txt

⇥

go to your home folder
$ cd ~
make the pictures directory using a relative path from ~
$ mkdir pictures
go inside of pictures
$ cd pictures
create the next directories using paths relative to ~/pictures
$ mkdir fruits
$ mkdir vegetables
$ mkdir unknowns
populate the unknowns/ folder using absolute paths for fun
$ mkdir /Users/<your username>/pictures/vegetables/tomatoes
note that this path must be in quotes because of the space in "string
cheese"
another option is to put a "\" before the space to escape it as in python,
but that can get difficult to keep track of in longer paths. Without the
space, bash would think "/Users/<your username>/pictures/vegetables/string"
and "cheese" are two separate arguments.
$ mkdir "/Users/<your username>/pictures/vegetables/string cheese"
take advantage of the fact that mkdir can accept multiple arguments
$ cd vegetables
$ mkdir asparagus carrots celery
if "vegetable summary.txt" were not in quotes, touch would create
a file called "vegetable" and a file called "summary.txt" because of the
space.
$ touch "vegetable summary.txt"
$ touch summary.txt
DONE!

Try using ls -R ~/pictures to recursively list everything in your ~/ pictures/ to look over
your work

Tip

Chapter 3 - Moving and Deleting Files

Introduction

Earlier in the book, I told you that bash is used to control your computer entirely from the
command line. That means that you should be able to do everything from the command line
that you can do by clicking around with a mouse. Let's check how we are doing with that.

Usually, with a mouse, you do things like the list below. The 's are things we have covered,
the 's are topics that we will get to, and the 's are topics we'll get to that you can only do
in the terminal.

 Navigate through �les and folders
 Create new �les and folders
 Move, delete, and rename �les and folders
 Run programs
 Automate the above things with scripts in mind blowing ways

In this chapter, we'll tackle moving, deleting, and renaming �les. After that, we will almost be
caught up with what you can do without the terminal.

Introduction
So far, the terminal may not seem that impressive to you. I mean, sure you feel like a hacker
when you use it, but so far all we have done is navigate around and create �les. You have
probably been happily doing that without the terminal for years.

In this chapter, we will look at one of many things that the terminal is just better at: moving
and deleting �les in bulk. We will also cover a bash concept called wildcards and have a
lively discussion about quotation marks. Let's get into it!

Moving Files With mv
To move �les, we use the move command: mv . Its usage is like this:

mv <source path> <target path>

For example, with a folder structure like this:

Here are three equivalent ways of moving chair.jpeg into seats (assuming furniture/ is
our working directory).

Result:

Actually, the usage for mv is more �exible than that. We can move multiple �les at once when
we use it like this:

For example:

Result:

Not bad! Imagine how awful it would have been to type the full mv three separate times

furniture
├── couch.jpeg
├── bean-bag.jpeg
├── chair.jpeg
├── seats/
└── storage/

$ mv chair.jpeg seats
$ mv chair.jpeg seats/
$ mv chair.jpeg seats/chair.jpeg

furniture
├── bean-bag.jpeg
├── couch.jpeg
├── seats
│ └── chair.jpeg
└── storage

mv <source path 1> <source path 2> ... <target path>

$ mv couch.jpeg bean-bag.jpeg chair.jpeg seats

furniture
├── seats
│ ├── bean-bag.jpeg
│ ├── chair.jpeg
│ └── couch.jpeg
└── storage

We did not show an example of this, but you can also use mv to move folders inside of each
other with the exact same usage.

Create the directory structure from this example:

BUT! Start from these commands to create them in a "�at" folder structure �rst. Flat means not
nested. Use the mv command to put the �les and folders in the right places.

See the solution

Renaming Files with mv

The mv command is also the way you rename �les and folders with bash . You can think of
renaming a �le as moving that �le from its original name to a new name (because names are
really paths in Linux... deep).

For example, consider this �le tree.

Here is what renaming looks like:

The result will be this:

Note

Exercise 3.1

furniture
├── seats
│ ├── bean bag.jpeg # have a space in the name this time
│ ├── chair.jpeg
│ └── couch.jpeg
└── storage

$ mkdir furniture seats storage
$ touch "bean bag.txt" chair.jpeg couch.jpeg

furniture
├── couch.jpeg
├── bean-bag.jpeg
├── chair.jpeg
└── seats/

rename couch.jpeg to stool.jpeg
mv couch.jpeg stool.jpeg

move chair into seats/ and rename AT THE SAME TIME!!!
mv chair.jpeg seats/futon.jpeg

If this all makes sense, then you are ready to learn to delete �les. Be careful!

Create a �le called bad filename.txt . Now rethink your life and get rid of the spaces by
renaming it to bad-filename.txt .

See the solution

Deleting Files With rm

Just as the �eld of magic has a powerful yet dangerous sub�eld of dark magic, bash has a
simple yet dangerous way of deleting �les permanently: the rm command .

If you want to destroy your entire system, go ahead and run this command:

Continue reading to learn what this does.

Before we talk about the usage of rm you should know what we mean when we say "delete".
When you "delete" �les and folders on Windows and MacOS, the �les go to a happy place
called the "recycle bin" or the "trash can". This is essentially a waiting place that �les go to
before they make their journey to the great beyond.

On Windows and MacOS, when you truly want a �le off of your computer, you click "empty
recycle bin"฀or some equivalent of that. Only then is the �le truly gone forever. However, if
you change your mind, and want your �le back, you can always dig it out of the recycle bin
before you empty it.

You can probably see where this is going:

When you use rm to delete a �le or folder, that �le or folder is immediately gone FOREVER!

furniture
├── bean-bag.jpeg
├── stool.jpeg
└── seats
 └── futon.jpeg

Exercise 3.2

Danger

sudo rm -rf /

Danger

Hopefully, you are becoming appropriately terri�ed of this command. Using it safely requires
a little more knowledge than just learning the basic usage. Let's start learning about rm
directly from its man page.

Simpli�ed, this man page is saying that the usage of rm goes like this:

The -r �ag tells rm to "recursively delete" the directory and everything inside of it. rm will
fail if you try to delete a directory without the -r �ag. That is for your own safety. It wants to
help you not delete more than you want to.

When deleting anything, whether it be �les or directories, you can use -i to have bash
double check with you before deleting every �le like this:

NAME
 rm -- remove directory entries

SYNOPSIS
 rm [-dfiPRrvW] file ...

DESCRIPTION
 ...
 -i Request confirmation before attempting to remove each
 file, regardless of the file's permissions, or whether
 or not the standard input device is a terminal.
 The -i option overrides any previous -f options.

 -f Attempt to remove the files without prompting for
 confirmation, regardless of the file's permissions.
 If the file does not exist, do not display a diagnostic
 message or modify the exit status to reflect an error.
 The -f option overrides any previous -i options.

 -R Attempt to remove the file hierarchy rooted in
 each file argument. If the -i option is specified,
 the user is prompted for confirmation before each directory's
 contents are processed (as well as before the attempt
 is made to remove the directory). If the user does
 not respond affirmatively, the file hierarchy rooted
 in that directory is skipped.

 -r Equivalent to -R.

 -v Be verbose when deleting files, showing them as they are removed.

 ...

delete one or more files
$ rm <file 1> <file 2> ...

delete one or more directories and their contents
$ rm -r <dir 1> <dir 2> ...

At that point, only the input y or yes (along with pressing Enter) will result in the �le
being deleted. If you use rm -ri some/important/folder , rm would give you this prompt for
every �le, folder, sub-folder, etc. contained in some/important/folder .

You can see how this helps prevent you from catastrophically deleting too much... but at the
same time, you can probably sense how annoying this is when the folder you are trying to
delete contains thousands of �les.

-f is short for "force". If you want to cancel out the -i �ag, you can use the -f �ag after it,
which overrides the -i and tries to do a force delete.

So, if you did, rm -rif some/important/folder , rm would go right ahead and delete the
entire folder along with all of its contents without requiring you to con�rm any of them.

But wait... why would we ever put -i and -f into the same call to the rm command? Isn't
that, like, a waste of typing? Good point. If our goal is to just blow through deleting a folder,
we can just type rm -rf and be done with it.

However, rm -rif is worth talking about. The next two tips show why learning this is not
crazy.

$ rm -i chair.jpeg
remove chair.jpeg?

⏎

A neat bash command we have not covered yet is alias . alias allows you to create
command shortcuts for yourself to save you time when you �nd yourself typing long commands
frequently. It works like this:

alias can be used in tricky ways. For example, I can make an alias of echo that uses the
command echo . Observe:

Do you see the trickiness here? Whenever we go to use the echo command after creating the
alias echo="echo hi" alias, bash puts all of the arguments we pass to echo after the
alias . So bash is really running:

The next tip shows how this is relevant to rm .

Like I said, rm is dangerous. -i is a way to protect yourself from accidentally deleting too
much at once. For this reason, it is super common for rm to actually be an alias of rm -i ! You
can check this on your system by running alias rm .

This makes it so that, by default, if an inexperienced bash user goes to delete an important
folder containing one thousand �les, they won't make it far before giving up. But you know about
the -f �ag, so you can take the safety off and delete almost anything.

Notice the emphasis on "almost". There are many �les which your user does not have the
necessary permissions to delete by default. But don't worry, we'll cover the topic of permissions
and users in a later chapter so that you can delete those ones, too.

Tip #1 - The alias Command

create a shortcut command called "say-hi"
$ alias say-hi="echo hi"
use it
$ say-hi
hi
double check to see how my shortcut works
$ alias say-hi
say-hi='echo hi'
remove my alias because I don't want it anymore
$ unalias say-hi

$ alias echo="echo hi"
$ echo
hi
$ echo bob johnson
hi bob johnson

echo hi bob johnson

Tip #2 - rm is usually an alias!

If you took the time to read and understand this section, great job! You are a safe person,
and you will handle the destructive power of rm responsibly

Check to see if rm is an alias on your system. If it isn't, make it an alias for rm -i .

See the solution

Exercise 3.3

Consider how important the Death Star plans were for stopping Darth Vader. Imagine that the
rough draft of the Death Star plans were stored on their central Linux mainframe under rough
draft schematics.txt (naturally the dark side prefers open source tools like Linux).

Once the plans were completed, they made a �nal version called schematics.txt .

So their folder structure looks like this. Notice the unfortunate spaces in one of the �le names.

Joe-Bob the storm trooper saw that schematics rough draft.txt was taking up a lot of
space. He �gured he could make room more cat videos by getting rid of the rough draft. Luckily,
Joe-Bob had learned Linux 3 days before so he knew he didn't need waste his superiors' time by
running this idea past them. He ran:

To Joe-Bob's horror, he saw this output:

Starting to panic now, he checked the contents of schematics/ .

Where is schematics.txt ???

Like we have talked about, spaces are the way bash tells different arguments apart. So, when
Joe-Bob ran rm rough draft schematics.txt , bash saw three arguments: rough , draft ,
and schematics.txt . Dutifully, rm tried to delete all three of those things as commanded, but
it couldn't �nd rough or draft . bash did �nd schematics.txt , though, so it went ahead and
deleted it. 1 out of 3 is better than nothing, right?

It would have worked if Joe-Bob had used spaces like this:

But he didn't...

They had to let Joe-Bob go after that incident.

An easy mistake for bash noobs to make

schematics
├── rough draft schematics.txt
└── schematics.txt

$ rm rough draft schematics.txt

rm: rough: No such file or directory
rm: draft: No such file or directory

$ ls
rough draft schematics.txt

$ rm "rough draft schematics.txt"

Story Time

Ed Catmull–an amazing computer scientist and co-founder of Pixar–tells this story in his
book Creativity, Inc. Various versions of the same account can also be found all over the
internet.

When Toy Story 2 was in development, somehow somebody accidentally ran rm -rf / on
the Linux machine holding all of the assets for the movie!

Remember from Chapter 1 that / is the root directory? So, rm -rf / means: delete
everything on a machine.

One by one, all of the characters and scenes disappeared right before the production crew's
eyes! In a panic, the directors and staff met in a conference room to discuss what to do. They
estimated it would take thirty people a year to recreate what had been lost.

After an hour in the meeting, an employee who had been working from home suddenly
remembered that she had been creating routine backups of all the production assets. She
and one of the technical leaders got into a car and rushed to her home. They grabbed the
laptop, wrapped it in blankets, and drove in the slow lane all the way back to Pixar where they
were welcomed as heroes by their relieved team.

There are many takeaways you could glean from this story, but mainly: be careful with rm !

Before we discussed rm , we had not talked about many parts of Linux or bash that you might
consider "dangerous".

Sure, with touch we could theoretically generate so many empty text �les that our computer ran
out of space. Or with mv you could maybe rename or move a critical �le or folder to break
something. But those things are reversible and fairly easy to avoid.

However, you should be starting to sense that bash can do catastrophic things to your computer
that you can not necessarily do from outside the terminal.

So please. For your own safety. Never run a command in your terminal if you don't understand
what it does. StackOver�ow is awesome... but be cautious young one

Never run commands you don't understand

Create the following directory structure. Be sure to keep the spaces in the names.

Now use the rm command to delete dummy file.txt and THEN unnecessary folder/ .

After that, remove rough draft schematics.txt

See the solution

Chapter 3 Wrap Up
Fantastic job working your way through this chapter!

You could easily have just googled the mv and rm commands or read through their man
pages to see how to use them. But, by reading through this chapter and doing the exercises,
you are protected from making catastrophic mistakes using rm .

In the next chapter, we will learn about a tool called wildcards which take mv , rm , and several
other commands to the next level.

Chapter 3 Exercise Solutions

3.1 - Creating the furniture directory

The directory looks like this:

Exercise 3.4

schematics
├── unnecessary folder/
| └── dummy file.txt
├── rough draft schematics.txt
└── schematics.txt

create the starter files/folders with a flat structure
$ mkdir furniture seats storage
$ touch "bean bag.txt" chair.jpeg couch.jpeg

verify that they are all there
$ ls
bean bag.txt chair.jpeg couch.jpeg furniture seats storage

move the folders into place
$ mv seats storage furniture

move the files into place
$ mv "bean bag.txt" chair.jpeg couch.jpeg furniture/seats

BONUS - clean up the files and folders we made
$ rm -r furniture

3.2 - Renaming a �le with a bad name

3.3 - Aliasing rm

3.4 - Practicing rm

We want this folder structure:

create a file with a bad name
touch "bad filename.txt"

rename that darn thing
mv "bad filename.txt" "bad-filename.txt"

BONUS - clean it up
$ rm bad-filename.txt

check to see if rm is already an alias
$ alias rm

if it is already aliased, unalias it for practice
$ unalias rm

now give rm a safer alias
$ alias rm="rm -i"

validate that it worked
$ alias rm
rm='rm -i'

BONUS - try it out
$ touch dummy-file.txt
$ rm dummy-file.txt
remove dummy-file.txt? y

dummy-txt should be nowhere to be found
$ ls

schematics
├── unnecessary folder/
| └── dummy file.txt
├── rough draft schematics.txt
└── schematics.txt

create the folder structure
$ mkdir schematics
$ mkdir schematics/"unnecessary folder"
$ touch schematics/schematics.txt "schematics/rough draft schematics.txt"
$ touch "schematics/unnecessary folder/dummy file.txt"

remove dummy file.txt
$ rm "schematics/unnecessary folder/dummy file.txt"

remove unnecessary folder
$ rm -r "schematics/unnecessary folder"

remove rough draft schematics.txt
$ rm "schematics/rough draft schematics.txt"

validate the result
$ ls schematics
schematics.txt

Chapter 4 - Wildcards and Globbing

Introduction

This is going to be a fun chapter . If you have been following along with the exercises, you
may have noticed that bash commands often take one or more �le paths as arguments.
Would you agree that it feels tedious to have to type out all of those �le paths? I think so.

Okay �ne, if you have been using the Tab key like a maniac (as you should!), typing out �le
path after �le path isn't as tedious. But when the number of �les gets large, you're going to want a
better method.

In this chapter, we will cover an incredibly useful tool called wildcards to help us to manipulate
huge amounts of �les and folders with the greatest of ease

Let's get started!

Wildcards

In the last chapter we looked at the rm and mv commands. One highly convenient thing
about these two commands is that they can act on several �les at once like so:

This is nice, but how much effort does it really save us when we use rm ? We still have to type
out every single �le path we want to delete.

Or do we?

In bash , wildcards are special characters that you can include in �le paths which allow you
to select many �les at once. If that de�nition is confusing, don't worry, we will go over a
several examples in this chapter. For now, just know that wildcards are about to become your
best friend.

Use the Tab key!⇥

⇥

delete several files
rm <file path 1> <file path 2> <file path 3> ...

Wildcards in Context

Picture this: you are trying to take a picture on your phone. But every time you hit the camera
button, you get a fateful error message saying that your phone is out of storage space . I
know, I know. This is a sensitive topic for all of us.

Well, today is the day to free up that precious phone space by o�oading some of those
pictures onto your computer. So you do! When you are �nished, you have one big soup of
pictures in a folder like this:

If you are like me, this big, disorganized mass of �le names may trigger your OCD. That's
okay. My doctor says we can still live perfectly full lives despite our struggles

In case any of these �le extensions are unfamiliar to you:

mp4 and mov are common video formats

jpg and jpeg are equivalent extensions for the JPEG image format

HEIC is an image format often used by Apple devices

Here is the plan. We will clean up this mess by grouping these �les into a videos folder and a
pictures folder based on their �le type. When we are �nished, we will have a folder structure
that looks like this:

pictures
├── 2021-01-08.HEIC
├── 2021-01-09.HEIC
├── 2021-01-10.HEIC
├── 2021-01-11.jpg
├── 2021-01-12.mp4
├── 2021-01-13.mp4
├── 2021-01-15.mp4
├── 2021-02-08.HEIC
├── 2021-02-09.mp4
├── 2021-02-11.HEIC
├── 2021-02-12.HEIC
├── 2021-02-12.mp4
├── 2021-02-14.HEIC
├── 2021-03-08.HEIC
├── 2021-03-10.HEIC
├── 2021-03-10.jpg
├── 2021-03-12.mov
├── 2021-03-14.HEIC
└── 2021-03-15.jpeg

Do you know these �le types?

.
├── pictures
│ └── all the pictures...

We can start by creating the folders. Assume my working directory is pictures/ .

Fantastic! Now we just need to move the video �les out of pictures and into videos .
Seems simple enough. BUT! With the method we have been using to move �les so far, i.e.
typing out the name of every �le by hand, this would be sooo tedious.

I'll write it out for you just this once, but please don't ever ask me to do this again.

Ugh, that was awful. Imagine how much typing that would have taken if there had been
thousands of �les . Luckily, there is a better way.

Behold!

DONE!

That is so much shorter! Not to mention, I didn't even have to know any of the speci�c names
of the �les. Let's talk about this.

Wildcard 1 - * (asterisk)

* is a wildcard. That means that when we use it in a command, it "expands" and turns into
any character that it "matches". The best way to understand * is by looking at some
examples. We can use the echo command to see what various wildcards expand to.

└── videos
 └── all the videos...

move to the parent directory of pictures
$ cd ..

create videos as a sibling directory of pictures
$ mkdir videos

check the contents of this directory
$ ls
pictures videos

move into pictures so we won't have to prefix all
of the video file paths with "pictures/"
$ cd pictures

get busy movin' or get busy dyin'
$ mv 2021-01-12.mp4 2021-01-13.mp4 2021-01-15.mp4 2021-02-09.mp4 2021-02-
12.mp4 2021-03-12.mov ../videos

a more excellent way
$ cd pictures
$ mv *.mp4 *.mov ../videos

Consider this directory called example .

Assume example is our working directory. Let's see what this wildcard expands to used in a
few different ways.

Now that you have seen some examples, let's de�ne * one more time. * means: match any
number of any character. An important term to know here is pattern. A pattern is a
combination of wildcards and regular characters.

* , .jpg , *.jpg , and *jp* are all examples of patterns. Even normal �le paths are patterns;
they just don't have any wildcards. When you use a pattern in a bash command, bash tries
to match as many �le paths with that pattern as it can, and then it substitutes those in place
of the pattern.

So, inside of the example directory, when we run echo * , the * pattern expands to every �le
it can �nd there. So, bash ends up running echo a.txt b.txt c.txt a.jpg b.jpeg .
Naturally, because of the spaces, each of those �le paths gets passed to echo as a separate
argument.

example
├── a.txt
├── b.txt
├── c.txt
├── a.jpg
└── b.jpeg

match any file or folder name
$ echo *
a.txt b.txt c.txt a.jpg b.jpeg

match any file or folder names ending with ".txt"
$ echo *.txt
a.txt b.txt c.txt

match any file or folder names starting with "a"
$ echo a*
a.txt a.jpg

match any file or folder names containing "jp"
$ echo *jp*
a.jpg b.jpeg

Use this command to create �les with the same names as the images and videos we saw in the
�rst example of the chapter.

Use mkdir , mv , and the * wildcard to organize these �les by �le type like this:

You can use ls -R directory/containing/pictures/and/videos to check your answer.

See the solution

Suppose you have a �le named silly file with spaces.txt . You want to delete this �le
using rm –along with many other .txt �les.

rm *.txt will become rm silly file with spaces.txt .

Well, rm will see all of these as separate arguments: silly , file , with , and spaces.txt .
In the best case, no �les with those names exist in your working directory. In the worst case, one
or all of silly , file , and with did exist... and you just deleted them permanently.

Exercise 4.1

$ touch 2021-01-08.HEIC 2021-01-09.HEIC 2021-01-10.HEIC 2021-01-11.jpg
2021-01-12.mp4 2021-01-13.mp4 2021-01-15.mp4 2021-02-08.HEIC 2021-02-
09.mp4 2021-02-11.HEIC 2021-02-12.HEIC 2021-02-12.mp4 2021-02-14.HEIC
2021-03-08.HEIC 2021-03-10.HEIC 2021-03-10.jpg 2021-03-12.mov 2021-03-
14.HEIC 2021-03-15.jpeg

.
├── pictures
│ ├── heic
│ │ └── all the HEIC files...
│ └── jpeg
│ └── all the jpeg and jpg files...
└── videos
 ├── mp4
 │ └── all the mp4 files...
 └── mov
 └── all the mov files...

Wildcards hate spaces, too!

We have seen * matches any number of any character in the particular folder where you
invoke * . But if you want to see every subfolder and its contents using wildcards, you can use
**/* .

For example, after doing Exercise 4.1, we can get a list of every folder and subfolder in
pictures and videos by running echo **/* from the parent directory of those two folders.

If you tried this on the root directory like this: echo /**/* , you would get an error saying that
you are trying to pass too many arguments to echo ... because there are a ton of �les on your
computer.

To be honest, while there are technically three wildcards in bash most people only use * in
their daily work with the terminal.

However, for the sake of being thorough, we will cover the other two now.

Wildcard 2 - ?

In contrast with * , which can match any number of any character, ? is a wildcard that can
match any character, but only one. Again, we will need to see some examples for this to make
sense.

Let's use a new example directory for this.

Here are a few patterns using ?

Advanced Tip about **/*

example
├── aaa.jpg
├── bbb.jpg
├── ccc.jpeg
├── aaa.txt
├── bbb.txt
└── a.txt

match file names that start with 3 characters and end with ".jpg"
$ echo ???.jpg
aaa.jpg bbb.jpg

match file names that start with "aaa." and end with exactly 3 characters
$ echo aaa.???
aaa.jpg aaa.txt

match any file name that is 7 characters long
$ echo ???????
aaa.jpg bbb.jpg aaa.txt bbb.txt

Hopefully you get the picture: ? is used when you want to control the length of the �le
names matched by a pattern.

Of course, you can combine * and ? in one pattern, in which case the length of the matched
�le names would not be �xed. For example, *.??? would match all �les whose extension is
three characters long... so no .py �les

Alright, let's move onto the last wildcard!

Wildcard 3 - []

The last wildcard is [] . This wildcard is similar to ? in that it only matches one character at
a time. The difference is that with [] we can choose which characters we want to match.

For example,

Pattern Description

[a] Only the letter "a"

[abc] Any of the letters "a", "b", or "c"

[a-c] Any of the letters "a", "b", or "c"

[a-zA-z0-9] Any capital letter, lowercase letter, or number

As you can see from this table, there are two main ways to de�ne [] character sets in
patterns.

1. We can manually type out all of the characters we want to match, e.g. [abcde]

2. We can use a hyphen (-) as a shorthand for a range of characters to match, e.g. [a-e]

Let's look at some examples of pattern matching using the [] wildcard. This example folder
will be our working directory.

example
├── aaa.jpg
├── bbb.jpg
├── ccc.jpeg
├── aaa.txt
├── bbb.txt
└── a.txt

And here are the pattern match examples:

If you read through this section and the two before it, you have learned all three wildcards!
We will close this chapter with some �nal points about their general usage.

Wildcards and Double Quotes

You can use wildcards anywhere in a �le path. However, if the wildcard is inside of quotation
marks, bash will not expand it. For example:

Globbing in Python!

Pattern matching using wildcards is called globbing. This term comes from the idea that
when we use wildcard-powered search patterns, we are doing a "global search" for �les
matching that pattern.

There is a built-in glob library in Python for doing the same thing!

Assume this example folder is placed at my user directory at /Users/eric/example

In two lines of code, we can leverage the power and �exibility of wildcards to get the absolute
�le paths of every �le in example/ .

match ".jpg" file names where the first three letters are one of "a", "b",
or "c"
$ echo [abc][abc][abc].jpg
aaa.jpg bbb.jpg

match all file names beginning with "a" or "c"
$ echo [ac]*
a.txt aaa.jpg aaa.txt ccc.jpeg

match all file names containing "a" or "b" anywhere in them
$ echo *[ab]*
a.txt aaa.jpg aaa.txt bbb.jpg bbb.txt

will not expand
$ echo "/Users/eric/*"
/Users/eric/*

will expand
$ echo "/Users/eric/"*
... everything directly inside of /Users/eric ...

example
├── a.jpg
└── b.jpeg

Not bad, right?

In Python, code can get complicated very quickly when you are trying to search for speci�c
�les in the �le tree.

However, often a simple "glob pattern" is all you need when searching for �les in code. In
those cases, if you can use glob , you get massive style points for having simple, readable
code .

Chapter 4 Wrap Up
There you have it! You have learned the three bash wildcards and how to use them in bash
and Python. Let's summarize them now:

* - Matches any number of any character

? - Matches one character (but it can be any character)

[] - Matches one character from a character set we de�ne

All of these are quite useful. You can use them for commands like mv and rm to manipulate
several �les at once. Do not stress too much about memorizing ? and [] as they do not
tend to come up as often as * . Please do memorize the * wildcard.

Notice that, in this chapter, we did not cover any new commands. Rather, we discussed a tool
that helps us use many bash commands more effectively. In the next chapter, we will see a
few new commands, but the main focus will be yet another awesome tool that enhances
almost all bash commands. See you there!

Chapter 4 Exercise Solutions

4.1 - Sorting Files by Type with Wildcards

The goal is to achieve this folder structure:

>>> from glob import glob
>>> jpeg_files = glob("/Users/eric/example/*")
>>> print(jpeg_files)
["/Users/eric/example/a.jpg", "/Users/eric/example/b.jpeg"]
>>> ... proceed to do some awesome image processing ...

.
├── pictures
│ ├── heic
│ │ └── all the HEIC files...
│ └── jpeg
│ └── all the jpeg and jpg files...
└── videos

The end result should be this:

 ├── mp4
 │ └── all the mp4 files...
 └── mov
 └── all the mov files...

create the mass of files
$ touch 2021-01-08.HEIC 2021-01-09.HEIC 2021-01-10.HEIC 2021-01-11.jpg 2021-
01-12.mp4 2021-01-13.mp4 2021-01-15.mp4 2021-02-08.HEIC 2021-02-09.mp4 2021-
02-11.HEIC 2021-02-12.HEIC 2021-02-12.mp4 2021-02-14.HEIC 2021-03-08.HEIC
2021-03-10.HEIC 2021-03-10.jpg 2021-03-12.mov 2021-03-14.HEIC 2021-03-15.jpeg

create the directories
$ mkdir pictures videos
$ mkdir pictures/heic pictures/jpeg
$ mkdir videos/mp4 videos/mov

move the files into their folders
$ mv *jp* pictures/jpeg # matches ".jpg" and ".jpeg" files
$ mv *.HEIC pictures/heic
$ mv *.mov videos/mov
$ mv *.mp4 videos/mp4

.
├── pictures
│ ├── heic
│ │ ├── 2021-01-08.HEIC
│ │ ├── 2021-01-09.HEIC
│ │ ├── 2021-01-10.HEIC
│ │ ├── 2021-02-08.HEIC
│ │ ├── 2021-02-11.HEIC
│ │ ├── 2021-02-12.HEIC
│ │ ├── 2021-02-14.HEIC
│ │ ├── 2021-03-08.HEIC
│ │ ├── 2021-03-10.HEIC
│ │ └── 2021-03-14.HEIC
│ └── jpeg
│ ├── 2021-01-11.jpg
│ ├── 2021-03-10.jpg
│ └── 2021-03-15.jpeg
└── videos
 ├── mov
 │ └── 2021-03-12.mov
 └── mp4
 ├── 2021-01-12.mp4
 ├── 2021-01-13.mp4
 ├── 2021-01-15.mp4
 ├── 2021-02-09.mp4
 └── 2021-02-12.mp4

Chapter 5 - The Power of Redirection

Introduction

In the last chapter, we talked about wildcards, and we saw how they can save us a lot of
manual effort when trying to manipulate several �les at once. A great thing about wildcards
is that you can use them with tons of different commands.

In this chapter, we will explore another awesome tool called "redirection operators" which,
similar to wildcards, will supercharge what you can do with almost every bash command.

Essentially, redirection operators allow you to chain bash commands together by passing
(or redirecting) the output of one command into another as input. This is powerful stuff!

We will also pick up some super useful bash commands along the way.

Let's get started!

A First Encounter with Redirection Operators

For certain commands, when you run them in the terminal, we get a bunch of text as output.
For example,

You: Wait, didn't we talk about echo , like, �fty chapters ago?

Me: Yes! But now we need to get philosophical. Why do we see hi printed back out at us in
the terminal?

I can tell you're unimpressed with this question. In order to explain why this question is
important, I must introduce you to a fantastic new command: cat .

INSERT PUBLIC DOMAIN PICTURE OF CAT HERE

cat outputs the contents of a �le to the terminal. The basic usage of cat goes like this:

$ echo "hi"
hi

Technically cat is short for "con cat enate" because it can be used to concatenate the
contents of multiple �les. So, really the usage is like this:

Alright, alright. So, now you know cat . Let's get back to echo . Observe:

Can you see what just happened?

We ran echo "hi" , but we did not see the usual hi output in the terminal. Instead, the
output of echo "hi" AKA hi was redirected into a text �le called greeting.txt by a
redirection operator, > .

To understand what "redirecting output" means, we need to closer look at what the inputs
and outputs of bash commands really are. We will break that down in the next section.

Streams - The Communication Channels of bash Commands

In the last section, you saw your �rst redirection operator: > . In our example, we redirected
the output of echo into a text �le. But what do we mean by "output"?

All bash commands have inputs and/or outputs. We have already seen one example of an
input: command arguments. But there is another type of input: streams. The outputs of
bash commands can actually be streams as well.

Here's a diagram to help visualize this. Don't worry if you don't recognize the names "standard
in" and "standard out". We will be covering those soon!

print the contents of a file
$ cat <file path>

Note

print the contents of multiple files one after another
$ cat <file path 1> <file path 2> ...

redirect "hi"; note that "hi" isn't getting printed out!
$ echo "hi" > greeting.txt

something must be wrong! Let's look around
$ ls
greeting.txt

what's this?? Let's look inside of this file
$ cat greeting.txt
hi

So what are streams?

In Linux, streams are data (such as text) that travel from one process or command to
another.

To make this de�nition more tangible, imagine a stream as a �le somewhere on your
machine. When echo executes, it "writes" its output to that imaginary �le (the stream). Then,
other commands (or we) can take that data and do something with it if we want.

It turns out, this is almost exactly what is happening. There is a stream called "standard
output" or stdout for short. By default, all commands that have text as output write their
output to stdout. If we don't explicitly do something with the data written to stdout, then, by
default, bash just prints it to the terminal.

This is where redirection operators come in! Redirection operators or I/O redirection
operators (I/O is short for input/output) are special symbols we can use to tell bash what to
do with data in streams.

In the case of our �rst example, we used > to redirect the string "hi" , which was sitting in
the stdout stream into a text �le, greeting.txt .

Here are all of the I/O redirection operators. There will be examples of all of these later, so
don't worry if these explanations don't make sense right away.

Operator Description

Operator Description

> Redirect a stream to text �le. If the text �le does not already exist, create it. If it
does exist, *overwrite* it.

>> Append the contents of a stream to a text �le if it already exists. Otherwise,
create it.

| (pipe) Redirect or "pipe" a stream into a command to be used as an input. Note, the "|"
symbol is on the "\" (backslash) key on the keyboard.

< Send the contents of an existing text �le to a stream to be used as input for a
command.

<< Write out several lines of text and send it to a command as a stream without
actually creating a �le with those lines on disk.

Enough words! Let's do some examples!

Creating & Overwriting Files with >

Only some final text ended up in example.txt because > overwrites the target �le if it
already exists.

Creating & Appending to Files with >>

write some text to example.txt; create it if it does not already exist
$ echo "some text" > example.txt
$ echo "some more text" > example.txt
$ echo "some final text" > example.txt

send the contents of example.txt to stdout
$ cat example.txt
some final text

write some text to example.txt; create it if it does not already exist
$ echo "some text" >> example.txt
$ echo "some more text" >> example.txt
$ echo "some final text" >> example.txt

send the contents of example.txt to stdout
$ cat example.txt
some text
some more text
some final text

All three lines ended up in example.txt because >> appends to the end of a �le if it already
exists.

Use > and >> to capture the output of ls in a �le, but �rst, use echo to give that �le a title.
Hint, /bin has a good amount of things in it.

See the solution

In these examples, we took the output of various commands from the stdout stream and
redirected it into a �le. In the next section, we will look at using streams as inputs for
commands as well.

Taking Streams as bash Command Inputs
We have seen that bash commands often write output to a stream, stdout. Many bash
commands can take a stream as input as well.

It turns out, cat can!

We saw earlier that the typical usage of cat is cat <file 1> <file 2> However, if you
try using cat with no arguments, then cat expects a stream as input instead of arguments.

For bash commands, taking arguments as input and taking streams as inputs are not mutually
exclusive. Many commands can take both at the same time.

Check it out!

We just redirected the contents of cool.txt to a stream and then sent them into cat as
input. Nice!

Standard Input

Exercise 5.1

Note

create a text file with some text
echo "radical, duude" > cool.txt

send the contents of the text file to cat as a stream
cat < cool.txt
radical, duude

Now, watch what happens when we run cat with no arguments so that it expects a stream,
but we don't give it one.

The command just hangs (seems to run forever without completing). What does this mean?
Is our terminal going to be taken up by this hanging cat command forever??

Actually, cat is waiting for us!

As we've seen, there is a default output stream called "standard output" that gets written to
the terminal by default.

Very similarly, there is also a default input stream called "standard input" that gets used by
default if we don't feed a command a stream as input when it expects one. We call this
default input stream stdin.

It turns out, stdin is connected to our keyboard!

So if we just run cat with no arguments, and start typing things into the terminal, cat will
repeat back to us everything we type.

Use Ctrl + C to kill a command when it is hanging like this (or running too long)

More Examples of Using Streams as an Input

Now that we know that cat can take a stream as input, let's do some quick examples of
each of the input-stream operators: << , < , and | , and then we'll go over some of the most
useful commands involving streams as a reward for learning all of this stream theory.

The < Operator

We already saw this earlier in the cool.txt example. We can send the contents of a �le to a
stream to be used as input for a command using < .

the cat command hangs
$ cat

$ cat
stop mimicking me!
stop mimicking me!
no!
no!
I am dumb!
You are dumb! <-- not actually real
^C

Tip

⌃

The << Operator

The << operator let's us write several lines of text to a stream to be used as input to a
command without actually writing those lines as a �le on disk. So, whereas < , relies on a �le
to already be present, << lets us skip the step of creating a �le.

It does this by letting us write a heredoc , or a "document right here in the command line"

In action, it looks like this:

Whenever you see a terminal line starting with something> , it means the terminal is waiting for
you to �nish entering a string that you started to type.

For example, if you type a double-quote " , you will get a dquote> prompt. This allows you to
type a long, multi-line string right in the terminal. bash quits out of that if you type a second " ,
which it considers to be the closing double quote.

The same thing happens it you type \ , ' , (, ' , { , ` (backtick), or any other "opening"
symbol that should have an accompanying "closing" symbol.

As usual, if you don't feel like completing your string, you can use Ctrl + C to kill the bash
process instead.

EOF is an arbitrary string I chose. EOF stands for "End Of File" and it is pretty common to use
when you write heredocs. To write a heredoc, you just need to choose some string to let the
heredoc tool know when you have �nished typing your multi-line string.

So I could just as easily have done this,

$ cat << EOF
heredoc> I
heredoc> AM
heredoc> A
heredoc> WIZARD!!!
heredoc> EOF
I
AM
A
WIZARD!

Note

⌃

$ cat << GUMMY_SNACKS
heredoc> I
heredoc> AM
heredoc> A
heredoc> WIZARD!!!
heredoc> GUMMY_SNACKS
I
AM

but I was trying to look legit', you know?

I admit that just spewing all of this output into the terminal is not very useful. Let's redirect it
to a �le instead. The placement of the > redirection operator is a little weird here:

We could also have created this multi-line �le like this:

This doesn't look quite as clean, but it works, and you should not feel bad if you use it!

The | (Pipe) Operator

The | operator is pretty straightforward. It takes the output of one command and forwards
it (or pipes it) into another command as an input stream. For example,

And that is all of the I/O redirection operators! You deserve better examples than echo "hi"
| cat , but we haven't seen any commands besides cat that take streams as inputs. In the
next section, you will be rewarded for your diligence and learn some sweet new commands!

A
WIZARD!

write this multi-line string to a file
$ cat << GUMMY_SNACKS > solemn-declaration.txt
heredoc> I
heredoc> AM
heredoc> A
heredoc> WIZARD!!!
heredoc> GUMMY_SNACKS

inspect the file
$ cat solemn-declaration.txt
I
AM
A
WIZARD!!!

Note

use > for the first line in case this file already exists
$ echo "I" > solemn-declaration.txt
append the subsequent lines
$ echo "AM" >> solemn-declaration.txt
$ echo "A" >> solemn-declaration.txt
$ echo "WIZARD!!!" >> solemn-declaration.txt

overcomplicated way of printing "hi"
$ echo "hi" | cat
hi

Awesome Commands that Take Streams as Input

As promised, here are several fun commands that you can pipe streams into.

grep - The Ctrl + F of bash

grep is short for "global regular expression print". Totally fascinating, I know. But actually, it
is!

grep is a tool for doing global searches on �les and streams using a pattern matching
language called "regular expressions" (or regex for short).

In the last chapter, we used wildcards to create patterns to search for �les whose names
matched those patterns.

Similarly, Regex is an extremely powerful language for writing search patterns to �nd speci�c
substrings in large amounts of text. In short, it is an overpowered Ctrl + F for all
programming/scripting languages including bash

Going into the details of Regex is outside the scope of this book, but I highly recommend that
you �nd some tutorials online and learn it, as it is a rite of passage for all coders.
https://regexr.com/ is a great place to practice regular expressions and test ones you have
already written.

Su�ce it to say that friend is a valid regular expression to �nd any instances of friend in a
document, but regex can do a whole lot more.

The basic usage of grep is this,

The stream version is the one we will use. Ahem,

⌃

⌃

show all lines matching a regular expression in one or more files
$ grep <regular expression> <file 1> <file 2> ...

show all lines matching a regular expression in a stream
$ grep <regular expression>

create a text file called sick.txt
$ cat << EOF > sick.txt
heredoc> If I were a rich
heredoc> man... doo be doo be...
heredoc> would it spoil some
heredoc> vast eternal plan if I
heredoc> were a wealthy man?
heredoc> EOF

search for all lines containing "I"
$ grep "I" sick.txt
If I were a rich
vast eternal plan if I

https://regexr.com/

There you have it! Ctrl + F is now in the terminal

You could also use this with ls if a folder has TONS of contents, and you want to �nd a speci�c
�le.

Or you could use it with pip freeze if you have many Python packages installed, and want to
check for a speci�c one.

Use grep on the output of ls to see if your /bin folder has any �les containing the letter d .

See the solution

pbcopy and pbpaste

Sadly, these amazing commands are not available natively for the Windows Linux Subsystem or
Ubuntu. They can be set up, but it takes some effort.

Try the instructions in the appendix if you would like to try to set them up for yourself. You should
know:

These commands are non-standard in the WSL and Ubuntu, so at some point these
instructions may go out of date.

The setup uses material that we will discuss in the later chapters on writing bash scripts,
so you may want to wait until then and come back here.

https://www.techtronic.us/pbcopy-pbpaste-for-wsl/

pbcopy

You can copy streams directly to you your clipboard and paste them anywhere both inside
and outside of the terminal!

search for all lines containing "I" (using a stream)
$ cat sick.txt | grep "I"
If I were a rich
vast eternal plan if I

⌃

Tip

Exercise 5.2

Note for non-MacOS Users

file:///game-course/site/All/final.html
https://www.techtronic.us/pbcopy-pbpaste-for-wsl/

You could do something like this and paste it straight into your browser

pbpaste

If some text from the web or pbcopy is already in your clipboard, you can access it as a
stream with pbpaste like this,

Try it out!

nl

nl is short for "number lines". It takes a �lename or a stream and adds line numbers to the
beginning of the line.

This can be useful when you are troubleshooting error messages on a forum or in a video
call. You can pipe the error message into the nl command to make it easier for people to
reference speci�c lines in the error to discuss.

For example,

If you have pbcopy / pbpaste working, you can simply copy the error message in your
terminal and get the same result with,

put some text into the clipboard
cat complicated-url-to-awesome-site.txt | pbcopy

paste the contents of your clipboard to a new file
$ pbpaste > something-awesome.txt

append the contents of your clipboard to an existing file
$ pbpaste >> something-awesome.txt

pass the contents of your clipboard as an input stream
$ pbpaste | cat
something really awesome

$ cat << ERROR_MSG | nl
heredoc> NameError Traceback (most recent call last)
heredoc> <ipython-input-1-141b3ea3f03f> in <module>
heredoc>
heredoc> NameError: name 'k' is not defined
heredoc> ERROR_MSG

1 NameError Traceback (most recent call last)
2 <ipython-input-1-141b3ea3f03f> in <module>
3 ----> 1 k

4 NameError: name 'k' is not defined

$ pbpaste | nl

sort

sort can sort the lines of a stream or �le in a variety of ways. By default, it alphabetizes
them.

It accepts many �ags and keyword arguments to do things like sort in reverse order (--
reverse), check if the lines in the stream are already sorted (--check), etc.

wc

wc is short for "word count". By default, it counts the number of lines, words, and characters
in a �le or stream.

This is saying that the stream contains:

3 lines,

4 words, and

24 characters

Take some time to play with wc , sort , and nl .

Chapter 5 Wrap Up

Great work for making it to the end of another dense chapter. In this chapter we saw that
bash commands often use streams as inputs and outputs.

sort the lines in this stream and add line numbers
$ cat << TEXT | sort | nl
heredoc> Hello,
heredoc> my
heredoc> friends!
heredoc> TEXT

1 Hello,
2 friends!
3 my

$ cat << TEXT > some-text.txt
heredoc> Hello,
heredoc> my dear
heredoc> friends!
heredoc> TEXT
$ wc < some-text.txt
3 4 24

Exercise 5.3

With that knowledge, you can do a lot more with the command output than stare at it in the
terminal. You can store it in a �le or forward it into other commands.

I want to apologize if the wc , sort , and nl examples were boring. (But grep , pbcopy , and
pbpaste are legitimately awesome)

It may not immediately obvious how these particular commands will be useful to you down
the road. In reality, you will most often use redirection operators to read and write to �les.

The main reason we couldn't go over more exciting examples is that most of the coolest
bash commands do not come with Linux out of the box. You have to install them! We will
learn how to do that soon, I promise, and then this knowledge will pay off.

In the mean time, continue on to the next chapter to learn one �nal trick for combining
commands using variables.

After you learn that, you will �nally be ready to learn how to download new commands and
even write your own bash scripts! And then we will be able to move on to how this all ties
into making you an awesome Python developer.

So with that motivation, read on!

Chapter 5 Exercise Solutions

5.1 - Capturing the Output of ls with Redirection Operators

5.2 - "grepping" /bin

5.3 - Playing with nl, wc, and sort

There is no o�cial solution for this one. You can pipe the output of ls or cat into each of
these.

create a file and give it a title
$ echo "The Contents of /bin" > bin.txt
append the contents of /bin to the file; use >> instead of > so we don't
overwrite bin.txt
$ ls /bin >> bin.txt
check that it worked correctly
$ cat bin.txt
...

search /bin for any files or folders containing the letter "d"
$ ls /bin | grep d

	About This Book
	Who Is This Book For?
	What Will Be Covered?
	How to Use This Book

	Part I - Linux and the Command Line
	Chapter 0 - Getting Started With Linux
	What is Linux?
	Why Linux? (Open Source vs Closed Source)
	What is the Command Line?
	Installing Linux
	For Linux Users
	For MacOS Users
	For Windows 10 Users
	Video Version
	Text Version
	1. Enable the Windows Linux Subsystem
	2. Download Ubuntu Linux
	3. "Virtualize" Ubuntu Using VirtualBox or VMWare

	If You Have Windows 7 or Less
	1. Dual Boot Linux
	2. Use Git Bash

	Validate Your Linux Terminal Setup

	Chapter 1 - Navigating the Linux File System
	The bash Shell
	The pwd Command
	1. Likely Output on MacOS
	2. Likely Output in the WSL or Linux
	What does this output mean?

	ls and cd
	Command 1: ls
	Command 2: cd

	More on File Paths
	Absolute vs Relative File Paths
	Chapter 1 Wrap Up
	Chapter 1 Exercise Solutions
	1.1 - Exploring the File Tree

	Chapter 2 - bash Command Arguments
	Placeholders <> and []
	Comparing Commands to Python Functions
	some_command

	Chapter 2 Wrap Up
	Chapter 2 Exercise Solutions
	2.1 - Creating the pictures/ Directory

	Chapter 3 - Moving and Deleting Files
	Moving Files With mv
	Renaming Files with mv
	Deleting Files With rm
	Story Time
	Chapter 3 Wrap Up
	Chapter 3 Exercise Solutions
	3.1 - Creating the furniture directory
	3.3 - Aliasing rm
	3.4 - Practicing rm

	Chapter 4 - Wildcards and Globbing
	Wildcards in Context
	Wildcard 1 - * (asterisk)
	Wildcard 2 - ?
	Wildcard 3 - []
	Wildcards and Double Quotes
	Globbing in Python!
	Chapter 4 Wrap Up
	Chapter 4 Exercise Solutions
	4.1 - Sorting Files by Type with Wildcards

	Chapter 5 - The Power of Redirection
	A First Encounter with Redirection Operators
	Streams - The Communication Channels of bash Commands
	Creating & Overwriting Files with >
	Creating & Appending to Files with >>

	Taking Streams as bash Command Inputs
	More Examples of Using Streams as an Input
	The < Operator
	The << Operator
	The | (Pipe) Operator

	Awesome Commands that Take Streams as Input
	pbcopy and pbpaste

	Chapter 5 Wrap Up
	Chapter 5 Exercise Solutions
	5.1 - Capturing the Output of ls with Redirection Operators
	5.2 - "grepping" /bin
	5.3 - Playing with nl, wc, and sort

